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Abstract 
 

Solanaceous crops are ranked among the most important crops of the world after the staple crops. However, these plants are 

under a constant threat of various pathogens. Disease management of plants is very important to minimize the damage and 

economic losses caused by plant pathogens. Various strategies are used to manage the diseases in solanaceous crops stretching 

from cultural practices to transgenic approaches. However, manipulation of host resistance is considered the most effective 

and economical strategy for controlling these diseases. Plants employ a number of host resistance approaches against the 

invading pathogens ranging from basal resistance to hypersensitive response. Numerous resistance genes have been identified 

and well characterized in Solanaceae species. Such genes have long been conferring resistance against notorious phyto-

pathogens. This review gives a comprehensive description of various resistance mechanisms employed by plants to resist 

pathogens. The emphasis of this review is on the resistance genes that have been investigated in solanaceous plants. 

Furthermore, a number of known homologous resistance genes within the Solanaceae family have also been discussed. The 

review will be helpful in understanding the genetic knowledge of virulence in pathogens and resistance in plants. The 

knowledge of gene-for-gene interaction of plant-pathogen interaction at solanaceous crop interface will also aid in the 

effectual deployment of resistance genes in Solanaceae species in alternate forms. © 2019 Friends Science Publishers 
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Introduction 
 

Plant diseases cause severe threats for food security which  

needs to be addressed on preferential basis to allow a 

continuous accessibility to sufficient and nutritious food 

(Strange and Scott, 2005; Hameed et al., 2016). In 

developing countries, the concept of food security is a major 

trepidation because of rapidly increasing populations. It has 

been estimated that over 800 million people around the 

world do not have access to sufficient food (Strange and 

Scott, 2005). The food shortage caused by the plant diseases 

is an important factor to be pondered about. It is believed 

that 20 to 40% of agricultural production is lost globally due 

to the direct yield losses caused by plant diseases, animals 

and weeds (Savary et al., 2012; Bouwmeester et al., 2016). 

Plants pathogens and pests not only damage crops but are 

also affecting native plants and trees (Mumford et al., 2016). 

Estimations  suggest that the major part of food for 

human consumption is provided by 14 crop plants 

belonging to different families and genera (Strange and 

Scott, 2005). One of them is the Solanaceae family that 

comprises of the most important vegetable crops from genus 

Solanum. These solanaceous species not only fulfill the 

nutritional requirements but are also a source of drugs, 

ornamentals and medicines (Knapp et al., 2004; Mueller et 

al., 2005; Samuels, 2015; Yadav et al., 2016). These crop 

plants are attacked by major groups of plant pathogens viz., 

viruses, bacteria, fungi, nematodes, oomycetes and parasites 

(Strange and Scott, 2005). 

In this context, plant disease management seems very 

important to minimize the damage and financial loss caused 

by plant pathogens. General strategies to control plant 

diseases primarily rely on four methods: exclusion, 

eradication, protection and resistance. Exclusion is to prevent 

the entry of pathogens into the cropping area. Eradication is 

the removal of a pathogen after it enters into the planting 

area. Protection is to create a barrier between host plant and 

pathogen using chemicals like herbicides, insecticides or 

fungicides. Resistance is to enhance the ability of plant to 

withstand the plant diseases caused by pathogens. Resistance 
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is considered as the most effective way of controlling disease 

and it will be illustrated in this review. Moreover, this article 

is focused on prevailing diseases in plants of Solanaceae 

family, the defense mechanisms and the resistance genes that 

have long been proved effective in conferring significant 

resistance against these diseases. 

 

Importance of the Solanaceae Family 

 

Solanaceae family belongs to the class angiosperms 

(flowering plants). It is considered as one of the most crucial 

flowering families for human beings, which consists of 

approximately 100 genera and more than 3500 species 

(Samuels, 2015). Eight genera are of significant importance, 

which  contain more than 60% of the Solanaceae species 

(Yadav et al., 2016). Solanum is the most diverse and largest 

genus with approximately 1330 species that constitutes 50% 

of the species of Solanaceae family. The remaining  seven 

genera are Lycianthes with 200 species, Cestrum with 150 

species, Nolana with 89 species, Physalis and Lycium with 

85 species each and Nicotiana and Brunfelsia with 76 and 45 

species, respectively (Yadav et al., 2016). The diversity of 

Solanum genus has broadened its significance as it includes 

edible, medicinal and ornamental plant species (Table 1). 

Economically, the Solanaceae family is the 3
rd

 most 

significant plant taxon, and is considered as the most variable 

and valuable in terms of agricultural utility and vegetable 

crops, respectively (Knapp et al., 2004; Mueller et al., 2005; 

Perveen and Qaiser, 2007; Samuels, 2015). 

 

Immune Responses in Plants Against different 

Pathogens at Solanaceous Interface 

 

Plants respond to pathogen attacks by activating different 

immune responses. The type of activated defense response 

depends on respective pathogen. The environment in which 

plants are evolving is rich in microorganisms (Glazebrook, 

2005). A number of microorganisms can induce plant 

diseases (Ali et al., 2015). However, plants have developed 

extravagant and active defense mechanisms to avoid and 

minimize the loss occurring due to pathogenic infections. 

Plant disease resistance is very crucial to plants by 

providing effective and durable immunity to many plant 

pathogens (Soosaar et al., 2005). 

Generally the disease resistance in plants has been 

divided into two categories: non-host resistance and host 

resistance (Kang et al., 2005). Many plant species show 

complete resistance against number of pathogens. The plant 

species that show resistance to all members of a given 

pathogen are referred as non-host plants and the conferred 

resistance is termed as non-host resistance (Nürnberger and 

Lipka, 2005). The resistance is evident when the pathogen is 

unable to cause disease upon contact with plant (Gururani et 

al., 2012). The plant pathogens that are unable to cause any 

disease in non-host plants are termed as “heterologous 

pathogens”. Such pathogens exhibit a phenomenon of 

“heterologous plant-microbe interaction”. The non-host 

resistance comprises both constitutive physical and 

biochemical barriers and inducible reactions. Rigid cell 

wall, wax layers and antimicrobial secary metabolites on 

plant surface acts as constitutive barriers (physical and 

chemical barriers constitutively) for invading pathogens. If a 

pathogen succeeds in breaking these barriers, then the 

plasma membrane of plant cell aids in pathogen recognition 

and activates the inducible reactions in plant. The pathogen-

associated molecular patterns (PAMP) recognition actually 

triggers the receptor-mediated defense mechanisms in non-

host plants often regarded as PAMP triggered immunity 

(PTI) (Nürnberger and Lipka, 2005). Still, the heterologous 

plant-microbe interactions need various explanations. 

Hence, an improved understanding would prove to be an 

important breakthrough in the development of broad-

spectrum disease resistance plants (Kang et al., 2005). 

Both host and non-host resistances are the result of 

plant innate-immune responses. However, extensive 

investigations have been carried out on host resistance 

compared to non-host resistance as the latter is comprised of 

multiple unidentified pathways (Gill et al., 2015). Host 

resistance (also referred as genotypic resistance, specific 

resistance or cultivar resistance) can easily be studied 

genetically which is largely controlled by gene-for-gene 

resistance (Kang et al., 2005; Gill et al., 2015). Likewise in 

non-host resistance, basal defense is the first line of defense 

of host resistance to a range of plant pests and pathogens 

(Gururani et al., 2012). The sec response (may be considered 

as first active response) involves the PAMP recognition that 

results in PTI also known as primary immune response 

(Nürnberger and Lipka, 2005; Chisholm et al., 2006), the 

failure of which ultimately leads to the gene-for-gene 

interaction defense phenomenon mainly know as effector 

triggered immunity (ETI). In ETI, resistance (R) proteins 

from the plants interact with effector proteins from the 

pathogens. The pathogenic effector proteins suppress the 

primary immune response in plants lacking particular 

resistance genes. The R genes in plant either directly or 

indirectly monitor the presence of effector proteins, thus 

protect the plant against pathogens. This pair wise 

association of effector recognition by surveillance genes is 

termed as gene-for-gene interaction (Chisholm et al., 2006; 

Jones et al., 2014). Several plant immune responses that have 

proved effective in conferring resistance to plants under 

different situations have been discussed below. 

 

Basal Resistance 

 

Basal resistance is the first line of passive defense of both 

host and non-host resistance. This type of resistance 

includes: physical barriers (rigid cell wall, thick and waxy 

cuticles) and chemical barriers (phytoanticipins that acts as 

antimicrobial secary metabolite on the plant cell surface). 

These barriers help in restricting the penetration and 

establishment of pathogens on plant surfaces (Kaloshian, 
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2004; Nürnberger and Lipka, 2005; Kang et al., 2005;  

Chisholm et al., 2006; Gill et al., 2015). 

In basal resistance, microbe-associated molecular 

patterns (MAMPs) or pathogen-associated molecular 

patterns (PAMPs) like chitin, lip polysaccharides, flagellins, 

glucans and plant cell wall derived components (i.e., results 

of enzyme hydrolytic activities) acts as elicitors for plants. 

These elicitors are secreted by invading pathogens. Basal 

defense can be triggered by pathogens/non-pathogens as 

both exhibit such molecular components in their cells. These 

elicitors are primarily involved in PTI as first line of defense 

in plants. However, basal resistance is compromised during 

the release of effector proteins by adapted microbes that 

results in the suppression of these defense responses 

(Gururani et al., 2012). 

 

R Gene-mediated Resistance Responses 

 

Avirulence (Avr) or effector proteins are secreted by plant 

pathogens into the plant cell during initial infection. These 

effectors facilitate pathogen establishment on the plants by 

suppressing the plant defense mechanisms. However, plants 

have also modified their defense mechanisms by acquiring 

resistance proteins encoded by host resistance genes (R-

genes) that confer significant resistance against particular 

pathogen races. These R proteins are involved in a gene-for-

gene (R-Avr) interaction for recognizing plant pathogens 

(Collmer, 1998; Hammond-Kosack and Kanyuka, 2007; 

Mundt, 2014). Plant-pathogen interaction is a pairwise 

association in which the plant harboring R-genes confer 

surveillance against pathogen races carrying the 

corresponding Avr genes. Avr genes are found in each class 

of plant pathogens including viruses, bacteria, nematodes, 

fungus, and oomycetes, where these genes elicit a resistance 

response in the host plants. This resistance response is 

associated with another defense response termed as 

hypersensitive reaction (HR) (Gururani et al., 2012). 

According to the guard hypothesis of gene-for-gene 

interaction, indirect interaction occurs between resistance 

protein (R-protein) and pathogen Avr effector protein. The 

Avr determinant of pathogen initially interacts with another 

host plant protein and causes conformational changes in the 

target host protein. The target host protein might be 

considered as a part of general plant defense. The R protein 

monitors the Avr protein, target host protein interaction and 

detect the conformational alteration in host protein caused 

by Avr determinant. This conformational alteration of the 

target host protein allows the R- protein to bind with Avr-

host protein complex so that R-protein may trigger the 

resistance response against particular pathogen (Glazebrook, 

2005; Gururani et al., 2012). A prominent example of such 

interaction between Arabidopsis thaliana R-gene RPS5 and 

Pseudomonas syringae-Avr gene AvrPphB provides the 

most convincing evidence to the support guard hypothesis 

(Kaloshian, 2004). However, plants devoid of R-genes are 

more susceptible to disease-causing phyto-pathogens as 

pathogen virulence determinants suppress the plant defense 

mechanisms in the absence of R genes (Glazebrook, 2005). 

 

Systemic Acquired Response (SAR) 

 

Systemic acquired response (SAR) has emerged as an 

important category of host resistance that provides durable 

resistance to diverse pathogens (Kang et al., 2005). The 

phenomenon was observed in 1960 by Ross when it was 

found that the affected tobacco(Nicotiana tabacum) plants 

have developed resistance to secary infection of TMV in 

distal tissues (Durrant and Dong, 2004). The increased level 

of Salicylic acid (SA) in systemic leaves might be 

considered as a signal for the initiation of SAR. SA is then 

imported from infected leaves through phloem to other parts 

of plants and is being synthesized de novo. The conversion 

of SA to methyl salicylate (volatile compound) acts as a 

signaling factor and induces resistance in nearby healthy 

plants (Durrant and Dong, 2004; Glazebrook, 2005). 

Increase in SA level is associated with the activation 

of defense related genes. Two of them namely PAD4 and 

EDS1 are responsible for SA accumulation in plant tissues. 

PAD4 activates the defense reaction in response to SA 

signaling through the production of phytoalexins. However, 

two genes i.e., EDS5 and SID2 are needed for the 

biosynthesis of SA. SID2 initiates SA production by 

isochorismate pathway while EDS5 triggers the production 

of SA upon pathogen attack. Pathogen induced expression 

of EDS5 requires PAD4 and EDS1 (Glazebrook, 2005). The 

accumulation of H2O2 in plant tissues is also responsible for 

the production of SA during HR (Hammond-Kosack and 

Jones, 1996). It is complicated to arrange SA signaling 

events in order as the pathway comprises many feedback 

loops. Cell death during HR response causes SA production, 

which accelerates cell death. In the same way, EDS1 and 

PAD4 genes are required for SA accumulation and on the 

other hand the SA accumulation also enhances the 

expression of these genes (Glazebrook, 2005). 

Systemic acquired response is also associated with the 

activation of large number of pathogenesis-related genes 

(PRs) in both local and distal tissues (Ryals et al., 1994). 

PRs are defined as plant proteins that are produced, more 

specifically, induced in pathological or related situations. 

These proteins were first described in 1970s by Loon in 

infected tobacco plants being unaware of their role as anti-

pathogenic (Sugawara and Nikaido, 2014). Pathogenesis-

related genes may be considered as stress response genes as 

their expression is inducible by various factors. Among 

these factors, pathogenic infections caused by viruses, 

bacteria, nematodes and fungi are dominant. PR proteins 

together form a set of pathogen-induced proteins that 

possess anti-pathogenic activities ( Loon, 1997). These 

proteins are acidic in nature and have been recognized as 

chitinases and glucanases and are able to hydrolyze 

microbial cell constituents (Ryals et al., 1994; Hammond-

Kosack and Jones, 1996). However, a number of attempts 
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have been made to clone PR genes but they failed to 

enhance resistance by inducible glucanases and chitinases 

against fungal pathogens (Ryals et al., 1994). 

 

Hypersensitive Response (HR) 

 

A number of plant pathogens are biotrophs, which means 

these pathogens depend on living host tissues for their 

nutritional requirements (Govrin and Levine, 2000). Others 

are necrotrophs that fulfill their nutritional needs from dying 

or dead cells. Hemi-biotrophs are the pathogens that derive 

their nutrients from either living or dying cells and induce 

different defense mechanisms in plants (Glazebrook, 2005). 

The HR is one of the defense responses that act against 

biotrophic pathogens. The response is referred as one of the 

most important aspects in hampering growth of biotrophic 

pathogens by restricting their access to nutrients and water,  

which is accompanied by the localized and programmed 

plant cell death (Hiruma et al., 2013). During hypersensitive 

response, specific pathogen-attack recognition by gene-for-

gene interaction, prompts the generation of reactive oxygen 

intermediates (ROIs) and causes the death of local cells. 

Generation of ROIs (Superoxide and Hydrogen peroxide) 

within hours of pathogen attack is considered an important 

component of HR defense mechanism (Govrin and Levine, 

2000). Superoxide (O2
-
) and hydrogen peroxide (H2O2) are 

both moderately reactive in original form and cause cellular 

damage upon conversion into more reactive forms often 

known as “Reactive Oxygen Species (ROS). The O2
- 

is 

converted into HO2 (hydroperoxyl) radical upon protonation 

of O2
- 
at low pH. The HO2 is less polar as compared to O2

-
, 

therefore, crosses the biological membrane quite efficiently. 

It acts on fatty acids directly and converts linoleic, linolenic 

and arachidonic acids to lipid peroxides. Generation of O2
- 

under optimum conditions causes cellular damage by 

affecting cell membranes and by producing signaling 

molecules in the form of lipid peroxides. H2O2 enters into 

cell cytoplasm in sufficient concentration and somehow 

manages to reach nucleus of either plant or pathogen where it 

is converted into OH
- 
upon reaction with intracellular metal 

ions, which causes self-perpetuating lipid peroxidation. In 

this way, HR response cause local damage to plants and 

pathogens and activates other defense mechanisms of plants 

against pathogen infection (Hammond-Kosack and Jones, 

1996). In addition to lipid peroxidation, H2O2 acts as toxic 

substrate to microbes at specific levels in plants. H2O2 also 

initiates the synthesis of salicylic acid, which is an important 

signaling molecule of systemic acquired response (SAR) 

(Hammond-Kosack and Jones, 1996). However, sometimes, 

plant pathogens like nematodes are able to modulate the 

ROS pathway to develop compatible interaction with plants 

(Reviewed by Ali et al., 2015). 

 

RNA Silencing Pathways 

 

“RNA silencing” is another sophisticated genetic defense 

mechanism which provides resistance specifically against 

viral pathogens. Plants affected with viral infections grow 

new asymptomatic healthy leaves. These leaves show 

resistance to secary infection by the same or related 

pathogens (Liang et al., 2012). This phenomenon was 

previously known as “Recovery”. Years of research then 

resolved the mystery of recovery mechanism and the 

phenomenon was named as RNA silencing mechanism 

(Baulcombe, 2004; Soosaar et al., 2005) 

RNA silencing pathway is initiated when virus invades 

host plant and integrates its viral single stranded RNA 

(ssRNA). Virus genome encodes enzymes named “RNA-

dependent RNA Polymerases” (RDRPs). These proteins 

facilitate the mechanism of RNA silencing (Wang et al., 

2012). The RNA polymerase produces the antisense copies 

of viral genome thus helps in creating the double stranded 

viral RNA (dsRNA). Double stranded RNA is a key 

regulator in gene expression that initiates gene silencing 

collectively known as RNA interference of RNA silencing. 

The dsRNA is further processed by dicer into small RNAs 

(sRNAs) comprising 21-24 nucleotides. Dicer is an 

RNAase-III type endonuclease having the RNAase-III 

catalytic activity and double stranded RNA (dsRNA) 

binding site. In Arabidopsis thaliana, four types of dicer-

like proteins are present, named DCL1-DCL4. Three of 

them are involved in processing dsRNAs from different 

sources. Double stranded RNA is processed by Dicer into 

small interfering RNA (siRNA). The siRNA contains 

ribonucleoprotein particles that make complex with the 

members of protein-like family “Argonaute (Ago)”. This 

complex is referred as RISC complex (RNA induced 

silencing complex). While assembling into a complex, the 

duplex is unwound by special enzymes into single stranded 

form and bound directly and tightly to Argonaute protein in 

a complex (Baulcombe, 2004; Meister and Tuschl, 2004). 

The siRNA in the complex then guides the complex to carry 

out degradation of RNA and/or inhibition of translation 

(Wang et al., 2012). 

 

Major Resistance Genes for different Phyto-pathogens 

in Solanaceous Species 

 

Plants are a natural source of nutrition in an environment, 

where microorganisms are present everywhere (Glazebrook, 

2005; Leonard et al., 2017). Plants serve as host of several 

phyto-pathogens to fulfill their nutritional requirements. In 

plant pathology, a disease caused by pathogenic microbe 

depends on host-pathogen interaction and environmental 

conditions that favor the disease development. The 

environmental conditions are regarded as a most important 

factor in favoring the plant-microbe relationship and 

developing diseases in plants. Even the most susceptible 

plants do not develop disease when exposed to a large 

population of pathogens under unfavorable conditions. The 

environmental factors such as pH, light, temperature, heavy 

metals, water deficit, soil texture and moisture content 
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control plant-microbe interaction (Leonard et al., 2017). 

Solanaceae species are susceptible to a wide range of plant 

pathogens (Table 1). However, only major groups of these 

pathogens have been discussed here that are causing 

devastating damage to some of the globally important 

Solanaceae species. 

 

R Gene Family in Crop Plants 

 

Plant genome contains several classes of genes that provide 

resistance against particular pathogens. These pathogens are 

harmful to host plants because of their complex host-

pathogen interaction at molecular level (Meyers et al., 2005). 

The resistant genes provide protection against diverse plant 

pathogens in a given environment. To date, above 140 R-

genes have been introgressed and well characterized. The 

most of these R-genes (approx. 80%) belong to a class of 

genes called “nucleotide binding-site and leucine rich 

repeats” (NBS-LRR) (Wei et al., 2016). R-genes play a 

crucial role in plant defense against pathogens and provide 

resistance against particular races of pathogens. Different 

crops may contain specific resistant genes against specific 

pathogen strains/races. Such genes are often transformed into 

different plant species to induce resistance against specific 

plant pathogens. Almost 70 specific R-genes have already  

been reported (Collinge et al., 2008). 

According to the structural characteristics and amino 

acid compositions, R-gene encoding protein products have 

been classified into 8 major classes (Table 2) (Gururani et 

al., 2012). Most prevalent classes of R proteins are 

cytoplasmic proteins that contain nucleotide-binding site 

(NBS) and leucine rich repeats (LRR). These proteins are 

often associated with variable N-terminus and sometimes C-

terminus domains (Tameling and Takken, 2008). In 

angiosperms, the N terminus of NBS-LRR proteins contains 

three domains, namely Toll/Interleukin-1 receptor (TIR), 

Coiled-coil (CC), and Resistance to powdery mildew8 

(RPW8). Therefore, NBS-LRR genes are divided into TIR-

NBS-LRR (TNL), CC-NBS-LRR (CNL), and RPW8-

NBSLRR (RNL) subclasses. TNL and CNL proteins are 

involved in the recognition of specific pathogens, whereas 

RNL proteins serve as helpers in downstream defense signal 

transduction (Shao et al., 2019). 

Plant Nucleotide Binding Site Leucine-Rich Repeat 

(NBS-LRR) proteins can thus be categorized into two major 

classes: CC-NBS-LRR (CNL) and TIR-NBS-LRR (TNL). 

TNL is further subdivided into TIR and non-TIR proteins 

(DeYoung and Innes, 2006; McHale et al., 2006). The TNL 

proteins encode amino-terminus toll-interleukin-1 like 

receptor domain and the CNL proteins encode alpha-helical 

coiled-coil (CC) domain at its N-terminus. CNL proteins 

constitute the class one and TNL proteins comprise the class 

two of R-genes (DeYoung and Innes, 2006; Tameling and 

Takken, 2008; Gururani et al., 2012). The members of the 

class NBS-LRR are found abundantly in plants, for example, 

in Arabidopsis, these genes comprise 1% of its genome. The 

proteins of third and fourth class contain extracellular LRR 

region (eLRR) attached to a transmembrane domain (TrD), 

the latter also contains a receptor like protein kinase that is an 

intracellular serine-theorine kinase (KIN) domain. The fifth 

class comprises of resistant proteins having putative 

extracellular LRR (eLRR) attached to transmembrane 

domain (TrD), a Pro-Glu-Ser-Thr (PEST) domain and short 

protein motifs i-e; endocytosis cell signaling (ECS) domain. 

PEST domain functions for degradation of proteins. Class six 

R-proteins contain transmembrane domain (TrD) associated 

with a coiled coil (CC) domain. R-proteins of class seven has 

emerged as a new member of TNL class with addition of 

nuclear localization signal (NLS) at carboxy terminus and a 

WRKY domain at amino terminus. Enzymatic R-genes 

devoid of NBS and LRR domains constitute the class eighth 

(Gururani et al., 2012). 

Plant resistance genes mostly encode NBS-LRR 

proteins with variable amino and carboxy-terminal domains. 

To date, most of the R-genes cloned in plants belong to class 

NBS-LRR. These proteins are associated with the detection 

of diverse pathogens through direct and indirect interaction 

between NBS-LRR proteins and pathogen-derived 

molecules. The resistance conferred by NBS-LRR has found 

to be effective against biotrophs and hemi-biotrophs only 

(McHale et al., 2006; DeYoung and Innes, 2006). 
 

R-Avr Gene Interaction 
 

Plants and pathogens exhibit complex relationships. A 

specific pathogen can only infect a specific host plant. Plant 

species (that is not infected by a microorganism) is referred 

as non-host to that particular pathogen. In plant-pathogen 

interaction where the pathogen confers disease to host plant, 

the pathogen is termed virulent, the interaction is named 

compatible and the host plant is described as susceptible 

(Soosaar et al., 2005). Many resistant (R) and avirulence 

(Avr) genes have been identified in past years. The function 

of Avr genes is to induce virulence in host plant that lack 

specific R genes against particular virulent strain. Avirulence 

genes encode elicitors that act as specific signal molecules 

for plant resistant genes. The resistant genes of plants contain 

receptors for these elicitors. This recognition of elicitors by 

host plant R genes stimulates a cascade of host genes that 

leads to hypersensitive response, sometimes followed by 

systemic acquired response (Staskawicz et al., 1995). 
 

Plant Viruses and R-genes used against these Viruses in 

Solanaceous Plants 
 

Viruses are among the most harmful and detrimental plant 

pathogens. Almost 450 species of plant pathogenic viruses 

have been reported that are significantly limiting the crop 

production worldwide (Soosaar et al., 2005; Navas-Castillo 

et al., 2011). The unavailability of antiviral products have 

forced us to use disease control strategies like eradication, 

protection and genetic resistance (Hanssen et al., 2010; 

Imran et al., 2013). 
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Table 1: Plant pathogens affecting Solanaceae family plants 

 

Species Genus Host Range Disease/ Symptoms References 

Viral pathogens and their solanaceae hosts 

Tomato chlorotic leaf distortion 

virus (TCLDV) 

Bipartite 

Begomovirus 

Tomato, Pepper Leaf deformation and chlorotic 

mottle 

Zambrano et al. (2011) 

 
Tomato yellow margin leaf curl 

virus (TYMLCV) 

Begomovirus Tomato - - - - - - - - - - - 

Tomato Venezuela virus (ToVEV) Partially 
characterized 

Begomovirus 

- - - - - - - - - - - 

Tomato rugose mosaic virus 
(ToRMV) 

Begomovirus Tomato Golden mosaic and leaf distortion 
(rugosity) 

Fernandes et al. (2006) 

Potato yellow mosaic virus 

(PYMV)/ Tomato yellow Mosaic 
Virus (TYMV) 

Tomato, Potato Yellow Mosaics Morales et al. (2001) 

Tomato yellow leaf curl virus 

(TYLCV) 

Begomovirus Tomato Minor yellowing of leaflet margins 

in apical leaves during early 
infections and then upward curling 

of leaflets occur. 

Moriones and Navas-Castillo 

(2000) 

Tomato torrado virus (ToTV) Torradovirus Tomato, Tobacco, 
Pepper, Eggplant 

Burn-like symptoms has been seen 
on infected tomato leaves. Marked 

mosaics and stunting in pepper but 

no necrosis. 

Verbeek et al. (2007); Amari et 
al. (2008) 

Tobacco rattle virus (TRV) Tobravirus Tobacco, Potato Necrosis, chlorosis, mottling. Canto et al. (2004); Macfarlane 

(2010) Pepper ringspot virus (PepRSV) Pepper  Ringspot on leaves. 

Pepino mosaic virus (PepMV) Potexvirus Tomato, Pepino Yellow leaf spots and mosaic on 
leaves, chlorosis, brown streaking 

on stems, spotty ripening of fruit. 

Jones et al. (1980); Vlugt et al. 
(2000) 

Potato virus X (PVX) Potato, Pepper, Tomato Tuber necrotic ringspot disease in 
potatao/Apical necrosis 

Green and Kim (1991); Davino et 
al. (2017) 

Tobacco mosaic virus (TMV) Tobamovirus Tobacco, Pepper Mosaic and mottle Green and Kim(1991); Scholthof 

(2004) 
Tomato spotted wilt virus (TSWV) Tospovirus Pepper Chlorosis, chlorotic spots on leaves 

 

Tsompana et al. (2004); Zheng et 

al. (2010) 

Tomato necrotic ringspot virus. Pepper, Tomato - - - - - - - - - - - Chiemsombat et al. (2010) 
Cucumber mosaic virus (CMV) Cucumovirus Pepper Leaf deformation, yellow discoloration, 

mosaic, mottle and necrosis 
Green and Kim (1991); Tsai et al. 

(2008) 
Chilli veinal mottle virus 

(ChiVMV) 

Potyvirus Pepper Dark green mottle, leaf distortion 

and reduced leaf size. 

Pepper veinal mottle virus 
(PVMV) 

Leaf abscission, fruit distortion, 
vein chlorosis and mottle. 

Potato virus Y (PVY) Potyvirus Pepper, Potato, Tobacco Tuber necrotic ringspot disease in 

potato/Yellowing, veinclearing, 
mottle, leaf distortion, stunted 

plant growth and necrosis. 

Beczner et al. (1984); Green and 

Kim (1991); Heuvel et al. (1994); 
Solomon-Blackburn and Barker 

(2001) 

Potato virus S  
(PVS), Potato virus M (PVM) 

Carlaviruses Pepper, Potato Tuber necrotic ringspot disease in 
potato. 

Green and Kim (1991) 

Potato mop-top virus (PMTV) Pomovirus Potato Brown arcs and circles in the tuber 

flesh. 

Barker et al. (1998) 

Bacterial pathogens and their solanaceae Hosts 

Ralstonia solanacearum Ralstonia Tomato, Potato, 

Tobacco, Eggplant 

Wilt Disease Nguyen and 

Ranamukhaarachchiv (2010); 
Kumar et al. (2017) 

Pseudomonas syringae pv. Pseudomonas Tomato Bacterial speck Martin (1999) 

Erwinia carotovora Erwinia Tomato, Potato Bacterial soft rot disease Reddy (2016) 
Xanthomonas campestris pv. 

Vesicatoria 

Xanthomonas Pepper, Tomato Bacterial spot disease Liu et al. (2008); Potnis et al. 

(2015) 

Xanthomonas axonopodis pv. 
vesicatoria. 

Xanthomonas Pepper Bacterial spot disease Romero et al. (2010) 

Xanthomonas euvesicatoria Bacterial leaf spot Ivey et al. (2016) 

Oomycete pathogens and their solanaceae hosts 
Phytophthora infestans Phytophthora Potato, Tomato,Hairy 

nightshade, Cutleaf 

nightshade, Bittersweet, 
Tobacco 

Late blight Zimnoch-Guzowska et al. (2003); 

Potter et al. (2011); Akhtar et al. 

(2012); Fisher et al. (2012; 
Mendonca et al. (2015) 

Phytophthora capsici Phytophthora Pepper, Tomato Phytophthora blight and fruit 

rot/root and crown necrosis 

Ozgonen and Erkilic (2007); 

Mendonca et al. (2015) 

 

Table 1: Continued 
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Table 1: Continued 

 

Fungal pathogens and their solanaceae hosts 

Alternaria solani  Tomato Early blight Panthee and Chen (2010) 
Rhizopus stolonifer,  

Botrytis cinerea, Alternaria alternata 

 Cherry tomato Black rot by Alternaria alternate Wang et al. (2008) 

Macrophomina phaseolina Macrophomina Eggplant Root-rot disease Ramezani (2008) 
C. acutatum,  

C. capsici,  

C. gloeosporioides, C. coccodes 

Colletotrichum Capsicum spp. Chilli anthracnose disease/sunken 

necrotic tissues 

Than et al. (2008) 

Fusarium oxysporum f. spp. 

melongenae 

 Eggplant Vascular disease Toppino et al. (2008) 

Chalara elegans  Tobacco Black root-rot/ black lesions on the 
roots, stunting and late maturation 

Bai et al. (1995) 

Nematodes and their solanaceae hosts 

M. incognita 
 

Meloidogyne Eggplant Root-knot disease/stunted growth, 
root deformation and leaf 

discoloration 

Khan et al. (2012) 

M. javanica Eggplant, 

Potato 

Vovlas et al. (2005); Khan et al. (2012) 

Meloidogyne species 

 

Tomato Nombela et al. (2003); Jones et al. (2013) 

M. euphorbiae Macrosiphum Tomato 
G. rostochiensis Globodera Potato Potato cyst Back et al. (2006); Almeida-Engler and 

Favery (2011) 

G. pallida Jones and Lettice (2016) 
N. aberrans Nacobbus Potato Falsa root-knot/cavities and 

lessions inside root tissues 

Almeida-Engler and Favery (2011); Jones 

et al. (2013); Reddy (2016) 
P. neglectus Pratylenchus Root Lession 

 
Table 2: Major classes of resistance gene-encoding R-proteins and their domain arrangements 

 
Class Arrangement of functional domains Examples 

  Host R-gene 
CNL 

 

Tomato  I2, Mi-1.2 

TNL  

 

Tobacco, 

Arabidopsis 

N gene, 

RPP5 

eLRR-TrD 

 

Tomato Cf-9, Cf-4, Cf-2 

eLRR-TrD-Kinase 

 

Rice Xa21 

LRR-TrD-PEST-ECS 

 

Tomato Ve1, Ve2 

eLRR-CC 

 

Arabidopsis RPW8 

TIR-NBS-LRR-NLS-WRKY 

 

Arabidopsis RRS1-R 

Enzymatic R-genes 

 

Tomato Pto 

 

 

(Adapted from (Gururani et al., 2012) NBS: Nucleotide Binding Site; LRR: Leucine Rich Repeats; TrD: Transmembrane Domain; TIR: Toll-interleukin-1 receptor; 

eLRR: extracellular Leucine Rich Repeats; PEST: Pro-Glu-Ser-Thr (amino acid domain); CC: Coiled Coil; NLS: Nuclear Localization Signal domain; WRKY: conserved 

amino acid sequence WRKYGQK 
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Among important Solanaceae crop plants, tomato (S. 

lycopersicum) is susceptible to many viruses which include: 

tomato chlorotic leaf distortion virus (TCLDV), tomato 

rugose mosaic virus (ToRMV), tomato yellow leaf curl 

virus (TYLCV), tomato mosaic virus (ToMV), pepino 

mosaic virus (PepMV) and the newly emerging tomato 

torrado virus (ToTV) (Hanssen et al., 2010; Imran et al., 

2013). Within a decade of its identification, the Pepino 

Mosaic Virus has emerged as the major disease-causing 

virus in greenhouse tomato crops. Other newly emerging 

viruses include: Torradovirus (specie: tomato torrado virus), 

Begomovirus (specie: tomato yellow leaf curl virus), 

Crinivirus (specie: tomato infectious chlorosis virus) and 

Tospovirus (specie: tomato yellow ring virus) (Hanssen et 

al., 2010). Potato (S. tuberosum) is also under a constant 

threat of plant viruses including potato virus Y (PVY), 

potato virus X (PVX), potato virus A (PVA), potato virus V 

(PVV), potato leaf roll virus (PLRV), potato virus S (PVS), 

Table 3: Host resistance genes against viral pathogens 
 

Host Pathogen R-gene Location in genome Avr-gene References 

Solanum peruvianum Tomato spotted wilt virus (TSWV) Sw-5 Long arm of chr 9 ---- Roselló et al. (1998, 2001); 

Brommonschenkel et al. (2000); 

Spassova et al. (2001) Sw-6 ---- ---- 

Tomato Mosaic Virus (ToMV) Tm-2 ---- ---- Lanfermeijer et al. (2005) 

Tm-2
2 

---- ---- Lanfermeijer et al. (2003) 

Tomato yellow leaf curl virus 

(TYLCV) 

Ty-5 ---- ---- Verlaan et al. (2013) 

Solanum habrochaites Tomato Mosaic Virus (ToMV) Tm-1 ---- ---- Ishibashi et al. (2007) 

Solanum habrochaites Tomato yellow leaf curl virus 

(TYLCV) 

Ty-2 ---- ---- Verlaan et al. (2013) 

Solanum chilense Ty-, Ty-3, Ty-4 ---- ---- 

Solanum tuberosum spp. 
Stoloniferum 

Potato Virus Y Rysto Chr 11 ----  

Solanum tuberosum sspp. 

Andigena 

Ryadg Chr 11 ---- 

Solanum chacoense Rychc ---- ---- 

Solanum tuberosum Y-1 ---- ---- Vidal et al. (2002) 

Solanum tuberosum  Potato virus X Rx1 Top arm of chr  12 Coat protein Querci et al. (1995); Jong et al. 

(1997) Rx2 Upper arm of chr 5 

Ry ---- Nla proteinase Mestre et al. (2000) 
Nx, Nb Chr 5 Coat protein 

Solanum lycopersicon  Tobacco mosaic virus Tm-1, Tm-2, Tm-2a ---- ---- Whitham et al. (1994, 1996) 

Solanum lycopersicum 
spp. Hirsutum 

Potato virus Y (PVY), Tobacco 
etch virus 

pot-1 ---- Vpg Moury et al. (2004) 

Nicotiana glutinosa L. Tobacco Mosaic Virus (TMV) Metallothionein-

like gene 

---- ---- Choi et al. (1996) 

Nicotiana benthamiana Tobacco Mosaic Virus (TMV) N-gene ---- ---- Whitham et al. (1994) 

Capsicum chinense Tobacco Mosaic Virus (TMV) L
3 

---- Coat protein Berzal-Herranz et al. (1995) 

Capsicum chacoense L
4 

---- ---- Boukema (1980) 

Capsicum annum  Turnip Mosaic Virus L1, L2, L3 ---- Coat protein Cruz et al. (1997); Gururani et al. 
(2012) 

Potato virus Y pvr2-eIF4E ---- ---- Ruffel et al. (2005) 

 

Table 4: Host resistance genes against bacterial pathogens 
 

Host Pathogen R-gene Location in genome Avr-gene References 

Solanum 

pimpinellifolium 

Pseudomonas syringae  Prf ---- avr-Pto Martin et al. (1993) 

Capsicum chacoense Xanthomonas campestris Bs2 ---- Avr-Bs2 Kearney and Staskawicz (1990) 

Lycopersicum 

esculentum 

Pseudomonas syringae pv tomato Pto short arm of chr 5 Avre-Pto, Avre-PtoB Ronald et al. (1992); Salmeron et 

al. (1996) 

Capsicum spp. Pseudomonas syringae Pflp gene ---- ---- Liau et al. (2003) 

 

Table 5: Host resistance genes against fungal pathogens 
 

Host Pathogen R-gene Location in genome Avr-gene References 

Solanum Peruvianum Cladosporium fulvum Cf-2 short arm of Chr 6 Avr2 Dixon et al. (1998) 

Solanum hirsutum  C. fulvum Cf-4 short arm of chr 1 Avr4 

Solanum Cerasiforme C. fulvum Cf-5 short arm of Chr 6 Avr5 
Solanum 

Pimpinellifolium 

C. fulvum Cf-9 short arm of chr 1 Avr9 Jones et al. (1994) 

Fusarium oxysporum I-2 ---- Avr1 

Solanum lycopersicum 

 (Lycopersicum 

esculentum ) 

Alternaria alternata Asc ---- ---- Ori et al. (1997); Simons et al. (1998) 

Verticillium dahliae Ve1 Chr 9 Ave1 Brandwagt et al. (2000); Gururani et al. 

(2012); Song et al. (2017) Verticillium albo-atrum Ve1, Ve2 ---- Ave1, Ave2 

Nicotiana benthamiana Colletotrichum 

destructivum 

NbGSTU1, NbGSTU2, 

NbGSTU3, NbGSTF1, 

---- ---- Dean et al. (2005) 

Solanum torvum Verticillium dahliae StoVe1 ---- ---- 
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potato virus M (PVM) and potato mop-top virus (PMTV). 

Among these viruses, PVY belongs to the largest group of 

plant viruses (Potyvirus), which is the most harmful to 

cultivated potatoes. In recent years, the agricultural losses 

caused by PVY have surpassed the potato leaf roll virus 

(PLRV). In Pakistan, PLRV, PVX and PVY diseases are 

more common (Hameed et al., 2014). According to an 

estimate, PVY strains may cause up to 70% yield loss 

globally (Naveed et al., 2017). However, variable yield 

losses (40- 83%) of potato have been reported due to viral 

diseases in Pakistan (Ahmad et al., 2011; Hameed et al., 

2014). Tobacco is a well-known for valued drug or medicine 

preparations. Nicotine derived from tobacco is used as an 

active ingredient for many purposes (Scholthof, 2004). This 

plant is also affected by viral pathogens where the most 

eminent pathogen is Tobacco Mosaic Virus (TMV). TMV 

was the first ever described plant virus and is known to cause 

severe losses to the tobacco industry (Koch et al., 2016). 

To date, a number of plant resistance genes have been 

reported in Solanaceae species that confer resistance against 

several plant pathogens upon gene-for-gene interactions. 

Plants are more susceptible to viruses compared to any other 

pathogen; hence, more efforts have been made to identify 

viral resistance genes (Table 3). There are examples of many 

functional R-genes in genus Solanum that provide resistance 

to diverse range of plant viruses and have been cloned in 

other species to trigger resistance against particular viral 

pathogens. One of those viral resistance genes is Sw-5 that 

was the first dominant resistance gene reported against  

tomato spotted wilt virus (TSWV) in S. peruvianum (Stevens 

et al., 1992). The Sw-5 confers resistance against isolates of 

TSWV, tomato chlorotic spot virus (TCSV) and groundnut 

ring spot virus (GRSV) (Boiteux and Giordano, 1993). 

Owing to high expression in S. lycopersicum and wide 

protection conferred by Sw-5. Breeders have extensively 

used this gene to introgress into other crops. Another R-gene 

named „Sw-6‟ was also identified later in tomato but the 

resistance conferred by this gene was found lower than Sw-5 

(Roselló et al., 2001). 

Another example of resistance gene against viral 

pathogen is N-gene of N. benthamiana. The N-gene belongs 

to a TNL class of R-proteins and confers HR response in 

tobacco and tomato plants against TMV and ToMV 

respectively (Whitham et al., 1994). Members of the class 

NB-LRR show resistance to a range of pathogens like 

viruses, fungi and bacteria. N-gene has been cloned in 

tomato and pepper (Capsicum annuum) cultivars and has 

found to delimit the movement of TMV in surrounding cells 

by effectively inducing HR in transgenic tomato plants 

(Whitham et al., 1996). Although, wild tomato and pepper 

plants contain resistance genes that confer resistance to TMV 

isolates (Tm-1, Tm-2, Tm-2
2
 genes from tomato and L1, L2, 

L3 and L4 genes from pepper), but no gene has been found to 

be as effective as compared to N-gene (Whitham et al., 

1996). Plants show either extreme resistance (ER) or 

hypersensitive resistance (HR) to viral pathogens. Plants 

with ER provide resistance to several strains where even one 

gene can confer resistance against two or more viruses. For 

instance; S. hougassi R-gene Ryhou confers resistance to 

potato virus Y and A and Rysto gene from S. stoloniferum 

provides resistance against potato virus Y, A and V 

(Cockerham, 1970). The HR is strain specific and the genes 

associated with HR include: R
5
 from S. stoloniferum and Ny 

from potatothat provide resistance to PVY (Panthee and 

Chen, 2010; Mendonca et al., 2015). Plants with ER show no 

or limited symptoms when inoculated with viruses, however, 

plants with HR develop symptoms in the form of either local 

necrotic lesions or systemic necrosis (Solomon-Blackburn 

and Barker, 2001). 
 

Phyto-pathogenic Bacteria and R-gene Interactions at 

Solanaceous Interface 
 

A number of bacterial species have been reported as noxious 

plant pathogens (Table 1). Bacterial pathogens cause 

considerable yield losses (Kumar et al., 2017). According to 

an estimate, at least 350 species of the genus Xanthomonas 

are pathogenic to the plants (Strange and Scott, 2005). 

Ralstonia solanacearum, is the sec most vital soil-borne 

bacterial pathogen with wide host range of almost 200 plant 

species over 50 families. Wilt disease caused by bacteria 

affects Solanaceae crops including tomato, potato, tobacco, 

pepper and eggplant (S. aethiopicum) (Table 1). To date, no 

chemical product has proved effective against Ralstonia wilt 

disease (Chen et al., 2013). Other common bacterial diseases 

of Solanaceae species include bacterial leaf spot of Capsicum 

annum (bell pepper) caused by Xanthomonas euvesicatoria, 

bacterial soft rot by Erwinia carotovora spp. Carotovora on 

tomato and potato and bacterial spot of tomato and pepper by 

different Xanthomonas spp. (Potnis et al., 2015). Similarly, 

various species of Xanthomonas cause leaf blights in cotton 

and rice as well. 

Most of the bacterial pathogens (especially gram-

negative strains) are known to inject virulence proteins into 

the host cell cytoplasm by type-III system (T3S) (Kay et al., 

2007; Gururani et al., 2012). One of them is the plant 

pathogenic gram-negative bacteria of Xanthomonas, X. 

campestris pv. vesicatory (Xcv), the causal agent of bacterial 

spot disease in pepper, tomato and other solanaceous crops. 

Xcv delivers its avirulence gene in the host plant via type-III 

system that elicits the resistance response in host by 

activating its resistance genes (Kay et al., 2007). For 

instance, in pepper, resistance to Xcv is conferred by three, 

single loci, resistance genes viz., Bs1, Bs2 and Bs3 (Table 4). 

These genes are activated when the corresponding avirulence 

genes (avrBs1, avrBs2, avrBs3) of XcV enters the host 

cytosol. However, Bs2 gene has proved durable in the field 

and specifically recognizes different strains of Xcv. The gene 

has been cloned in tomato and pepper. Functional expression 

in transgenic tomatoes supported its use as a source of 

resistance in other Solanaceae species. The experiments on 

Bs2 gene also show that the gene provides significant 
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resistance against the Xcv strains in the field (Tai et al., 

1999). 

Another example of a genetic resistance to 

Pseudomonas syringae pv. tomato depends on two tomato 

resistance genes in tomato viz., Pto and Prf. Both genes 

belong to two different classes of R-proteins. The former 

belongs to the 8
th
 class of R-proteins encoding the protein 

kinase and the later contains the nucleotide binding site 

(NBS) and leucine rich repeat (LRR) region (Biezen and 

Jones, 1998). Pseudomonas syringae pv. tomato AvrPto 

avirulence gene interacts with Pto gene of tomato thus 

initiates the protein kinase cascade that in turn activates the 

plant defense mechanisms (Mucyn et al., 2006). Elimination 

mutations of Prf caused the loss of Pto resistance and a loss 

of organophosphate insecticide Fenthion sensitivity. 

However, when Prf is over expressed, it enhances the 

resistance against viral and bacterial pathogens but does not 

affect the Avr-Pto specified resistance. Moreover, it also 

improves the Fenthion sensitivity, hence controls both 

phenotypes (Oldroyd and Staskawicz, 1998). This role of Prf 

gene is because of its association with the host Pto kinase 

gene cluster. The gene exists in the middle of Pto gene 

cluster that is 500 bp from the Fen gene and 24 kb from the 

Pto gene. An overexpression of Prf mRNA leads to the 

activation of SAR independent of Avr-Pto and Fenthion. 

However, Avr-Pto and Fenthion elicitors recognition causes 

cell death and the induction of SAR (Salmeron et al., 1996). 

 

Fungi and Oomycetes-plant Interactions with Emphasis 

on R-genes In Solanaceae 

 

Fungal diseases have long been known to cause widespread 

threats to food security around the globe. Nineteenth and 20
th
 

centuries faced disastrous fungal disease epidemics like late 

blight of Irish potato, dutch elm disease of trees and chestnut 

blight caused by Phytophthora infestans, Phytophthora 

ramorum and Cryphonetrica parasitica, respectively (Potter 

et al., 2011; Fisher et al., 2012). Late blight disease is very 

common in potatoes and is a serious disease that globally 

affects potato yields (Zimnoch-Guzowska et al., 2003). 

Similarly, late blight is also one of the most important and 

common diseases of tomato (Mendonca et al., 2015). This 

disease mainly spreads during cold, rainy and foggy weather. 

It is called late blight because it is very difficult to detect the 

early infections and, when it is detected, it is often too late to 

protect the crops via chemical fungicides and other means 

(Panthee and Chen, 2010). Another fungal disease of tomato 

caused by necrophytic Alternaria solani is “Early blight”. 

The pathogen attacks the cultivated tomatoes during extreme 

cold conditions, high moisture, heavy dew and frequent rain 

(Panthee and Chen, 2010). Other different fungal diseases of 

Solanaceous crops and respective pathogens have been 

discussed in Table 1. 

Many fungal resistance genes have been reported so far 

that confer great resistance to the various fungal pathogens. 

For example, Cf-9 from S. pimpinellifolium (Jones et al., 

1994), Cf-2 from S. peruvianum (Dixon et al., 1998), Cf-4 

from S. habrochaites (Thomas et al., 1997) and Cf-5 from S. 

cerasiforme (Dixon et al., 1998) provide strong resistance 

during interactions between different species of 

Lycopersicon and fungus Cladosporium fulvum. This 

pathogen contains avirulence genes (shown in Table 5) that 

induce a HR response in tomato plants harboring particular 

resistance genes (Jones et al., 1994). 

Similarly, another prominent example of fungal 

resistance gene is Verticillium wilt resistance gene Ve from 

tomato. It confers resistance against Verticillium dahliae race 

1. Among the most important cultivated plants of Solanaceae 

family, the tomato, potato and eggplant serve as a host for 

Verticillium spp. The Ve gene is a single dominant resistance 

gene against Verticillium dahliae (Diwan et al., 1999). Many 

studies have been carried out on Ve locus and it was found to 

consist of two closely linked and inverted genes viz., Ve1 and 

Ve2 in tomato (Liu et al., 2012; Song et al., 2017), but only 

Ve1 was found to confer resistance in tomato against race 1 

of Verticillium dahliae and Verticilliumalbo-atrum. Initially, 

it was mapped on different locations. Then in 1993, the exact 

location of Ve gene was found by Zamir and his colleagues 

and the gene was mapped on short arm of chromosome no 9. 

The location of Ve is tightly linked with RFLP marker GP39 

on the genome of tomato (Diwan et al., 1999). So far, Ve 

gene has been cloned in many Solanaceae species like N. 

glutinosa (tobacco), potato and S. torvum (wild eggplant) and 

has found to confer effective resistance in transgenic plants 

against Verticillium spp. 

Like fungi, pathogenic oomycetes are also responsible 

for economic losses of important Solanaceae crops (Gururani 

et al., 2012). One of the most devastating oomycete 

pathogens, Phytophthora infestans has long been known to 

cause worldwide yield losses of potato. This pathogenic 

oomycete is rapidly emerging as more virulent and pesticide 

resistant (Haverkort et al., 2009). The pathogen also  causes 

late blight disease in many other important species of 

Solanaceae family like tomato and tobacco (Vossen et al., 

2005). A number of resistance genes have been identified in 

potato against P. infestans. Eleven resistance genes (9 of 

which are given in Table 6) have been found in S. demissum 

and S. stoloniferum (Colon and Budding, 1988). All of these 

R-genes were found race specific by conferring 

hypersensitive resistance (HR) against different races of the 

fungus. Therefore, when these R-genes were introgressed in 

potato cultivars, these genes were unable to confer resistance 

against all P. infestans races and hence, were attacked by 

more virulent races of pathogens. The resistance conferred 

by these race-specific R-genes was observed to be short-

lived (Song et al., 2003). Gene stacking of these genes could 

be a way forward for durable and multigenic resistance 

against P. infestans in potato. 

Helgeson et al. (1998) identified resistance gene in 

wild potato specie, S. bulbocastanum against late blight. This 

specie showed great resistance against all races of P. 

infestans. After the successful examination of the late blight 
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resistance, somatic hybrids retaining the high resistance of 

wild S. bulbocastanum were produced, as it was extremely 

difficult to cross the wild specie with potato directly. Thus, 

through somatic hybridization, the resistance was transferred 

into potato breeding lines (Helgeson et al., 1998). Many 

Solanaceous species harboring resistance genes are known to 

display resistance to P. infestans (Table 6). S. dulcamara 

(bitter sweet) has long been known as a host of P. infestans. 

Under conditions highly favorable for disease, S. dulcamara 

hardly gets infected with late blight. The specie shows a low 

level of genetic variation thus, easy to cross with other 

cultivar species. Golas and his colleagues (2010) conducted a 

study on S. dulcamara and identified the first resistance 

gene, Rpi-dlc 1on long arm of chromosome no 9 against P. 

infestans. The resistance was conferred by a single locus. In 

addition, one population was tested for broadness of 

resistance that indicated the presence of other Rpi genes in S. 

dulcamara (Golas et al., 2010). 

Table 6: Host resistance genes against Oomycetes 
 

Host Pathogen R-gene Location in genome Avr-gene References 

Solanum demissum Phytophthora 

infestans 

R1 chr 5 ---- Jo et al. (2015); Vossen et al. (2016) 

R2 chr 4 ---- 

R3a, R3b, R4, R6, R7 chr 11 Avr3a of R3a 

R8 long arm of chr 9 Avr 8 

Rpi-abpt1 ---- ---- 
Solanum 

bulbocastanum 

P. infestans Rpi-blb1 chr 8 ---- van der Vossen et al. (2003) 

Rpi-blb2 chr 6 ---- van der Vossen et al. (2003) 

Rpi-blb3 chr 4 ---- 

Ipio, Ipib, Ipieo4 ---- RB Vossen et al. (2005); Golas et al. (2010) 

Solanum dulcamara P. infestans Rpi-dlc1 long arm of chr 9 ---- Gururani et al. (2012) 

Solanum 

pinnatisectum  

P. infestans Rpi1 chr 7 ---- Wang et al. (2014) 

Solanum  
mochiquense  

P. infestans Rpi-mcq1 long arm of chr 9 ---- Golas et al. (2010); Kuhl et al. (2001); 
Ruffel et al. (2005); Sliwka et al. (2006); 

Foster et al. (2009); Pel et al. (2009) Solanum  phureja  P. infestans Rpi-phu1 long arm of chr 9 ---- 

Solanum  venturii P. infestans Rpi-vnt1.1 Rpi-vnt1.2 Rpi-vnt1.3 chr 9 ---- 
 

Table 7: Host resistance genes against nematode pathogens 
 

Host Pathogen R-gene Location in genome Avr-gene References 

Solanum peruvianum Meloidogyne spp. 

 

Mi-1.2 ---- ---- Milligan et al. (1998); Rossi et al. (1998); Vos 

et al. (1998); Nombela et al. (2003) 

Solanum pimpinellifolium Globodera spp. Hero ---- ---- Ernst et al. (2002) 

Solanum tuberosum Globodera pallida Gpa2 chr 12 ---- van der Vossen et al. (2000); Gebhardt and 
Valkonen (2001) 

Solanum tuberosum Globodera rostochiensis Gro1-4 ---- ---- Paal et al. (2004) 

Solanum spegazzinnii Globodera rostochiensis Gro1 Chr 7  Ernst et al. (2002) 

Solanum tuberosum spp. 

andigena 

H1 Chr 5 ---- 

Capsicum annum Meloidogyne incognita, 

Meloidogyne arenaria,  

Meloidogyne javanica 

Me1, Me3, Me7, N chr 9 ---- Barbary et al. (2014); Celik et al. (2016) 

CaMi ---- ---- 
 

Table 8: Homologous resistance genes in solanaceae species 
 

R-genes Homologous R-genes References 

Host R-gene Pathogen Host R-gene Pathogen  

Solanum tuberosum Gro1-4 Globodera 

rostochiensis 

Solanum lycopersicum Hero Globodera 

rostochiensis 

Paal et al. (2004) 

Solanum tuberosum Y-1 Potato Virus Y (PVY) Nicotiana benthimiana  N-gene Tobacco Mosaic Virus 

(TMV) 

Vidal et al. (2002) 

Solanum tuberosum Gpa2 Globodera pallida Solanum tuberosum Rx1 Potato virus X van der Vossen et al. (2000) 

Solanum venturii Rpi-vnt1.1 Phytophthora infestans Solanum lycopersicum Tm-2
2 

Tomato Mosaic Virus Foster et al. (2009) 
Solanum 

lycopersicum 

Ve1 Verticillium dahliae S. lycopersicoides SlVe1 Verticillium dahliae Chai et al. (2003) 

S. tuberosum StVe1 Simko et al. (2004) 

S. torvum StVe, StoVe1 Fei et al. (2000); Liu et al. 

(2012) 

Solanum peruvianum Sw-5 Tomato spotted wilt 

virus 

Solanum demissum  R8 Phytophthora 

infestans 

Vossen et al. (2016) 

Solanum peruvianum Mi Meloidogyne spp. Brommonschenkel et al. (2000) 
Solanum tuberosum StBCE2 Phytophthora infestans Nicotiana benthamiana NbBCE2 Phytophthora 

infestans 

Wang et al. (2014) 

Lycopersicum 

esculentum  

Ve1 Verticillium dahliae Nicotiana glutinosa  Ve1 (ortholog) Verticillium dahliae Zhang et al. (2013) 

Solanum peruvianum Mi-1 Meloidogyne spp. 

Bemisia tabaci 

Solanum 

bulbocastanum 

Rpi-blb2  Phytophthora 

infestans 

Vossen et al. (2005) 

Capsicum annum pvr2-eIF4E Potyvirus Solanum lycopersicum pot-1 (ortholog) Potyvirus Ruffel et al. (2005) 
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Plant-nematodes Interactions at R-gene Level Resistance 

in Solanaceae Faimly 

 

Plant-parasitic pathogens have long been known to cause 

diseases in many important vegetable crops aided by  

pathogens like fungi, oomycetes, aphids  and nematodes 

(Back et al., 2002). Over 4300 species of nematodes are 

parasitic to plants causing serious crop losses worldwide 

(Jones et al., 2013; Ali et al., 2015). The most economically 

crucial nematodes belong to Meloidogyne, Heterodera, 

Globodera, Rotylenchulus, Aphelenchoides, Pratylenchus 

and Radopholus genera (Jones et al., 2013; Reddy, 2016). 

Among these, the root-knot nematodes with in genus 

Meloidogyne are causing severe crop losses. Approximately 

25% yield losses have been estimated due to invasions of 

root-knot nematodes in main crops around the globe (Reddy, 

2016). The genus Meloidogyne includes 98 species and four 

of them being M. incognita, M. javanica, M. arenaria and M. 

hapla  cause major yield losses in solaneceous crops (Jones 

et al., 2013).Recently, M. graminicola has also been shown 

to cause yield losses up to 20% in rice (Jabbar et al., 2015). 

Meloidogyne incognita is the causal agent of root-knot 

disease in several solaneceous vegetable crops like tomato, 

potato, pepper and eggplant. The pathogen attack, in addition 

to severe gall formation on the root systems,  results in 

chlorosis and stunting that lead to extreme yield losses in 

these crops (Abolusoro et al., 2015). Similarly, species 

belonging to genera Heterodera and Globodera are also 

causing great economic losses to potatoes, cereals and 

soybean (Reviewed by Ali et al., 2015). Estimations suggest 

that potato cyst nematodes (G. rostochiensis and G. pallida) 

lead to 9% losses of potato production throughout the world 

(Jones et al., 2013). 

Several R genes have been identified against both 

Meloidogyne spp. and Globodera spp. (Table 7). We have 

recently reviewed the implications of R genes from various 

crops species during plant nematode interactions (Ali et al., 

2015) Resistance to Meloidogyne spp. was first identified in 

S. peruvianum which was named as Mi-1 gene that confers 

resistance to only 3 species of genus Meloidogyne namely, 

M. incognita, M. arenaria, M. javanica. The predicted 

protein structure of Mi gene encodes NB site and LRR 

region with CC domain at its N-terminus, thus belonging to 

the CNL class of R-proteins. The gene was observed to 

confer hypersensitive response against root-knot nematodes 

with localized necrotic lesions at the site of infection upon 

gene-for-gene interaction (Milligan et al., 1998; Rossi et al., 

1998; Gururani et al., 2012). Another example of root-cyst 

nematode resistance gene is CaMi from C. annum. The gene 

appeared to be highly expressed in flowers, leaves and roots. 

Like Mi-1 gene of tomato, CaMi also initiates a 

hypersensitive response in transgenic plants and show 

durable resistance to root-knot nematodes (Chen et al., 

2007). 

Many resistance genes have also been genetically 

characterized within Solanum species against potato cyst 

nematodes. Two species of genus Globodera named, G. 

rostochiensis and G. pallida have long been known to affect 

the potato yield. It incited the scientists to identify potato cyst 

resistance genes in wild potato species so that to induce 

resistance in potato cultivars. One of the genes termed „H1’ 

was later identified in S. tuberosum spp. Andigena. The 

dominant gene was found on chromosome no 5 of wild 

potato specie conferring resistance to G. rostochiensis 

pathotypes Ro1 and Ro4. The gene was widely used in 

commercial potatoes to confer significant level of durable 

resistance against Globodera spp. Similarly, another R-gene 

Gro1 from S. spegazzinii confers nematode resistance 

against G. rostochiensis pathotypes Ro1-5 (Ernst et al., 2002). 

Moreover, R-gene, HeroA from tomato was transformed into 

potato for enhancement of resistance against potato cyst 

nematodes, G. pallida and G. rostochiensis. The transgeninc 

expression of this gene led to hypersensitive response after 

the initiation of syncytia, which become abnormal and 

necrotic due to degeneration of surrounding cells (Sobczak et 

al., 2005). This suggests that R-genes and their products are 

one of the key strategies to be used for development of 

resistant solanaceous crop plants (Reviewed by Ali et al., 

2015). 

 

Homologous Resistance Genes 

 

Many species in Solanaceae family have been found to 

contain resistance genes that show considerable homology 

with the resistance genes of the same or other specie 

members (Table 8). In plants, majority of R-genes exist as 

members of tightly linked gene clusters. Uneven 

recombination between members of the cluster results in 

partial deletion or duplication events or the formation of 

novel chimeric genes ( Vossen et al., 2000). The duplication 

and speciation events lead to two types of homologous genes 

designated as paralogues and orthologues, respectively. 

Orthologous genes are presumed to describe the similarities 

and differences in genome sequences of different species in a 

most accurate way as they trace back to an ancestral gene 

shared by two different species (Gabaldón and Koonin, 

2013). Moreover, orthologous genes are considered to show 

equivalent functions that is the imprecise perspective as in 

some cases greater than expected differences between 

orthologues have been seen. However, orthologous genes 

appear to be functionally more similar relative to paralogues 

by a narrow margin (Gabaldón and Koonin, 2013). 

An example of an orthologous gene exhibiting the 

similar function is the Ve1 resistance gene that confer 

resistance to fungus Verticillium dahliae in both tomato and 

tobacco (Zhang et al., 2013). Tomato and tobacco belong to 

different genera (Solanum and Nicotiana, respectively); yet 

they are close relatives for the same gene family. The two 

species share a high degree of (coding) sequence homology. 

The Ve1 R-gene was first reported in tomato plant. Later on, 

during the agro-infiltration of N. glutinosa with the Ave1 

gene revealed the presence of functional Ve1 ortholog in it. 
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During the investigation, when Ave1 gene of Verticillium 

dahliae was inserted in N. glutinosa, the avirulence gene 

induced HR response while no such response was seen upon 

infiltration of Ve1 gene. This analysis suggested the presence 

of endogenous functional Ve1 orthologous gene in N. 

glutinosa conferring resistance to race 1 V. dahliae (Zhang et 

al., 2013). 

Whole genome duplication triggers the evolutionary 

novelties (Harikrishnan et al., 2015). The duplication event is 

the major contributor of specie divergence. Duplication 

events within a specie assigns new functions to duplicated 

genes also referred as paralogs and one such example is Sw-5 

gene in S. peruvianum. Sw-5 is a member of multigene 

family and confers multiple resistances. The RFLP aided 

mapping indicated that the majority of Sw-5 homologous 

were located on chromosome 9. Sw-5.1-4 map on the 

telomeric region, Sw-5.5 near centromeric region and Sw-5.6 

map down the long arm of chromosome 9. The Gpa6 gene 

(confer resistance to Globodera pallida) is present in 

proximity of Sw-5.1-3 genes. Similarly, the loci of Sw-5.5 

and Sw-5.6 genes were mapped near an R gene (Tm2
2
). On 

chromosome 12, the SW-5.7 gene locus is present near the Lv 

gene (for powdery mildew disease resistance). Thus, the 

paralog members of Sw-5 are dispersed in tomato genome at 

the sites where several virus, fungus and nematode resistance 

genes have been mapped (Brommonschenkel et al., 2000). 

Similarly, Gpa-2 R-gene from potato was overexpressed in 

the same plant species to infer resistance against G. pallida. 

This resulted in the development of stagnated and translucent 

female nematodes on transformed plant roots (Vossen et al., 

2000). To date, several resistance genes and their homologs, 

orthologs and paralogs have been found in different 

Solanaceae species that are conferring resistance to a broad 

range of pathogens (Table 8). 

 

Conclusion and Future Prospects 

 

Solanaceous crops are amongst the major crops of the world 

that are fulfilling the nutritional requirements of human 

beings since very long. A huge number of pathogens 

including viruses, bacteria, fungi, oomycetes and nematodes 

attack this family. These phyto-pathogens are provoking 

serious threats to the global food security. Practical 

applications of commercially synthesized antimicrobial 

drugs and chemical pathocides are losing their effectiveness 

as the diverse range of pathogens has developed resistance to 

such toxic chemicals. The pests and pathogens have evolved 

new mechanisms of inducing diseases in plants by delivering 

their avirulence genes in plants. On the other hand, during 

the coevolution of plant-microbe interactions, plants also 

acquired the resistance genes that have long been providing 

effective and durable resistance to the devastating diseases 

induced by the pathogens. A single plant resistance gene 

reacts to a particular avirulence gene. However, Solanaceae 

species also exhibit homologous resistance genes that are 

conferring resistance to the same pathogen isolates or to the 

different pathogens. 

Due to the significant resistance conferred by resistance 

genes in plants, breeders and biotechnologists are using these 

genes. These have been cloned in susceptible species of 

plants and successful transgenic species have been obtained. 

However, many isolates of phyto-pathogens have evolved 

mechanisms to resist the effects of resistance genes. 

Therefore, more research is needed to find the durable and 

robust resistance genes. It will be useful to understand the 

underlying mechanisms that many pathogens have evolved 

to combat plant R genes. A rapid increase in genome 

sequencing projects is producing vast amount of raw 

information, which is being stored as databases. Based on 

novel techniques of bioinformatics and omics, databases 

have become important tools for genome-wide identification 

and prediction of new genes. The application of novel 

methods for the development of disease resistance genes 

databases could be crucial to gather more information for 

such gene families and orthologous genes in plants. 

Moreover, a critical focus should be on the understanding of 

molecular gene regulatory mechanisms for disease resistance 

genes. It will be helpful for the integration of a sustainable 

disease resistance in plants. 
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